Sains Malaysiana 53(4)(2024): 969-982

http://doi.org/10.17576/jsm-2024-5304-18

 

Latent Hidden Factor Model for Malaysia Consumer Price Index

(Model Faktor Pendam bagi Indeks Harga Pengguna Malaysia)

 

NURULKAMAL MASSERAN1,2,*, SITI NORSALSABILA AHMAD FAROUK1, R. NUR-FIRYAL1,2 & MAHAYAUDIN M. MANSOR3

 

1Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Center for Modelling and Data Analysis (DELTA), Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 3School of Mathematical Sciences, College of Computing, Informatics & Mathematics, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

Received: 10 October 2023/Accepted: 1 March 2024

 

Abstract

The consumer price index (CPI) is one of the significant indicators that can be used to track the inflation rate of a country and assess changes in the cost of living. Generally, the CPI measures the change in the average price of goods and services used by households. The increase in inflation can have a negative socioeconomic effects and the changes in the CPI value needs to be monitored to ensure that the country does not experience a serious inflation rate. In this work, exploratory factor analysis (EFA) was employed to interpret the importance of each variable in the CPI and determine how the latent factors influence the CPI structure in Malaysia for the period of 2003–2022. The findings showed that there are two main latent factors that can be formed. Factor 1 can be classified as ‘Household Expenditures and Lifestyle Choices’ and consists of six variables, namely, ‘alcoholic beverages and tobacco’, ‘housing, water, electricity, gas, and other fuels’, ‘decoration, hardware, and household maintenance’, ‘health’, ‘recreational and cultural services’, and ‘education’. In contrast, Factor 2 can be classified as ‘Daily Necessities and Lifestyle Convenience’ which consists of six variables, namely, ‘food and non-alcoholic beverages’, ‘clothing and shoes’, ‘transportation’, ‘communication’, ‘restaurants and hotels’, and ‘various goods and services’.  In addition, the results of our analysis showed that Factor 1 is more dominant in influencing the CPI structure in Malaysia.

 

Keywords: Factor analysis; latent structure; statistical model description

 

Abstrak

Indeks harga pengguna (IHP) adalah salah satu petunjuk penting yang boleh digunakan untuk mengesan kadar inflasi sesebuah negara dan juga untuk menilai perubahan dalam kos sara hidup. Secara amnya, IHP mengukur perubahan dalam harga purata barangan dan perkhidmatan yang digunakan oleh isi rumah. Kenaikan inflasi boleh mendatangkan kesan sosioekonomi yang negatif dan perubahan nilai IHP perlu dipantau bagi memastikan negara tidak mengalami kadar inflasi yang serius. Dalam kajian ini, analisis faktor terokaan (AFT) digunakan untuk mentafsir kepentingan setiap pemboleh ubah dalam IHP dan menentukan bagaimana faktor pendam mempengaruhi struktur IHP di Malaysia untuk tempoh 2003–2022. Keputusan kajian menunjukkan terdapat dua faktor pendam utama yang boleh dibentuk. Faktor 1 boleh dikelaskan sebagai ‘Perbelanjaan Isi Rumah dan Pilihan Gaya Hidup’ dan terdiri daripada enam pemboleh ubah, iaitu, ‘minuman beralkohol dan tembakau’, ‘perumahan, air, elektrik, gas dan bahan api lain’, ‘perkakasan, hiasan dan penyelenggaraan isi rumah’, ‘kesihatan’, ‘perkhidmatan rekreasi dan kebudayaan’ dan ‘pendidikan’. Sebaliknya, Faktor 2 boleh dikelaskan sebagai ‘Keperluan Harian dan Kemudahan Gaya Hidup’ yang terdiri daripada enam  pemboleh ubah, iaitu ‘makanan dan minuman bukan alkohol’, ‘pakaian dan kasut’, ‘pengangkutan’, ‘komunikasi’, ‘restoran dan hotel’ serta ‘barangan dan perkhidmatan lain’. Di samping itu, hasil analisis kami menunjukkan Faktor 1 lebih dominan dalam mempengaruhi struktur IHP di Malaysia.

 

Kata kunci: Analisis faktor; huraian model berstatistik; struktur pendam

 

REFERENCES

Abdul Karim, Z., Mod Asri, N. & Wajdi, M.F. 2006. Hubungan antara Indeks Harga Pengguna (CPI) mengikut wilayah di Malaysia. Jurnal Ekonomi Pembangunan 7(2): 184-201.

Amit, N., Sapiri, H. & Yusof, Z.M. 2022. Factors affecting housing price in Malaysia using structural equation modeling approach. Sains Malaysiana 51(12): 4161-4173.

Allen, R.C. Bassino, J-P., Ma, D., Moll-Murata, C. & Van Zanden, J.L. 2011. Wages, prices, and living standards in China, 1738–1925: in comparison with Europe, Japan, and India. Econ. Hist. Rev. 64(s1): 8-38.

Backhaus, K., Erichson, B., Gensler, S., Weiber, R. & Weiber, T. 2021. Multivariate Analysis: An Application-Oriented Introduction. Wiesbaden: Springer.

Bartlett, M.S. 1951. A further note on tests of significance in factor analysis. Br. J. Res. 4: 1-2.

Beavers, A.S., Lounsbury, J.W., Richards, J.K., Huck, S.W., Skolits, G.J. & Esquivel, S.L. 2013. Practical considerations for using exploratory factor analysis in educational research. Pract. Assess. Res. Evaluation. 18(1): 6.

Cattell, R.B. 1996. The scree test for the number of factors. Multivariate Behavioral Research 1(2): 245-276. Newsom 2005

Chen, M. & Hu, X. 2017. Linkage between consumer price index and purchasing power parity: Theoretic and empirical study. J. Int. Trade Econ. Dev. 27(7): 729-760.

Chu, M.Y., Law, T.H., Hamid, H., Law, S.H. & Lee, J.C. 2022. Examining the effects of urbanization and purchasing power on the relationship between motorcycle ownership and economic development: A panel data. Int. J. Transp. Sci. Technol. 11(1): 72-82.

Cúrdia, V. & Woodford, M. 2011. The central-bank balance sheet as an instrument of monetary policy. J. Monet. Econ. 58(1): 54-79.

Daud, S. 2021. The COVID-19 pandemic crisis in Malaysia and the social protection program. J. Dev. Soc. 37(4): 480-501.

Department of Statistics Malaysia. 2020. Indeks Harga Pengguna. https://www.dosm.gov.my/v1/uploads/files/6_Newsletter/Newsletter%202020/DOSM_BPHPP_5-2020_Siri-44.pdf  Accessed on 16 May 2023.

Department of Statistics Malaysia. 2021. Pendapatan purata isi rumah merosot 10.3 peratus kesan pandemik COVID-19 pada tahun 2020. Laporan Anggaran Pendapatan Isi Rumah dan Insiden Kemiskinan, Malaysia. https: //www.dosm.gov.my/v1/uploads/files/5_Gallery/2_Media/4_Stats%40media/4-Press_Statement/2021/8%20Ogos/Kenyataan %20Media%20Anggaran%20kemiskinan%202020%206%20Ogos%202021 _COMBINE.pdf  Accessed on 3 July 2023.

Department of Statistics Malaysia. 2023. Consumer price index. https://www.dosm.gov.my/admin/images/icon/contentdoc_pdf_20220907235910.pdf Accessed on 29 January 2024.

Gorsuch, R.L. 2014. Factor Analysis. New York: Routledge.

Gourinchas, P.O. 2022. Policymakers Need Steady Hand as Storm Clouds Gather over Global Economy. IMF Blog. https://www.imf.org/en/Blogs/Articles/2022/10/11/policymakers-need-steady-hand-as-storm-clouds-gather-over-global-economy

Graf, B. 2020. Consumer Price Index Manual: Concepts and Methods: Washington: International Monetary Fund. https://www.elibrary.imf.org/display/book/9781484354841/9781484354841.xml Accessed on 29 January 2024.

Hair, J.F., Anderson, R.E., Tatham, R.L. & Black, W.C. 2010. Multivariate Data Analysis. 7th ed. New York: Prentice Hall International Inc.

Hassan, M.S. 2022. Kuasa beli menurun, harga barang naik. Harian Metro. https://www.hmetro.com.my/utama/2022/07/864528/kuasa-beli-menurun-harga-barang-naik

Hobijn, B. & Lagakos, D. 2005. Inflation inequality in the United States. Rev. Income Wealth 51(4): 581-606.

Howard, M.C. 2023. A systematic literature review of exploratory factor analyses in management. J. Bus. Res. 164: 113969.

Husaini, D.H., Puah, C-H. & Lean, H.H. 2019. Energy subsidy and oil price fluctuation, and price behavior in Malaysia: A time series analysis. Energy 171: 1000-1008.

Jaravel, X. & O'Connell, M. 2020. Real-time price indices: Inflation spike and falling product variety during the Great Lockdown. J. Public Econ. 191: 104270.

Kaiser, H.F. 1970. A second-generation little jiffy. Psychometrika 35(4): 401-415.

Kassim, S.H. & Manap, T.A.A. 2008. Consumer credit and monetary policy in Malaysia. Int. J. Consum. Stud. 32(3): 188-193.

Mhd Ruslan, S.M. & Mokhtar, K. 2020. Structural break and consumer prices: The case of Malaysia. Cogent Bus. Manag. 7(1): 1767328.

Murdipi, R. & Law, S.H. 2016. Dynamic linkages between price indices and inflation in Malaysia. Jurnal Ekonomi Malaysia 50(1): 41-52.

Newsom, J.T. 2005. A quick primer on exploratory factor analysis. Available at: https://web.pdx.edu/~newsomj/semclass/ho_efa.pdf. (Accessed 5 July 2023).

Pérez-Barea, J.J., Fernández-Navarro, F., Montero-Simó, M.J. & Araque-Padilla, R. 2018. A socially responsible consumption index based on non-linear dimensionality reduction and global sensitivity analysis. Appl. Soft Comput. 69: 599-609.

Raza, H., Laurentjoye, T., Byrialsen, M.R. & Valdecantos, S. 2023. Inflation and the role of macroeconomic policies: A model for the case of Denmark. Struct. Change Econ. Dyn. 67: 32-43.

Sek, S.K. 2023. A new look at asymmetric effect of oil price changes on inflation: Evidence from Malaysia. Energy Environ. 34(5): 1524-1547.

Sek, S.K. 2017. Impact of oil price changes on domestic price inflation at disaggregated levels: Evidence from linear and nonlinear ARDL modeling. Energy 130: 204-217.

Shaari, A.F. 2019. Peningkatan kos hidup: Apa kata data? Malaysia Kini. https://www.malaysiakini.com/news/497984

Siswanah, E. 2021. Mathematical Study: The CPI in the expenditure sub group using factor analysis. J. Phys.: Conf. Ser. 1796: 012118.

Tabachnick, B.G. & Fidell, L.S. 2019. Using Multivariate Statistics. Boston: Pearson Education.

Victor, V., Joy Thoppan, J., Jeyakumar Nathan, R. & Farkas Maria, F. 2018. Factors influencing consumer behavior and prospective purchase decisions in a dynamic pricing environment - An exploratory factor analysis approach. Soc. Sci. 7: 153.

Watkins, M. 2021. A Step-by-Step Guide to Exploratory Factor Analysis with Stata. New York: Routledge.

Yusof, N., Nin, L.F., Kamal, H.K.M., Taslim, J.R.A. & Zainoddin, A.I. 2021. Factors that influence the inflation rate in Malaysia. Int. J. Acad. Res. Bus. Soc. Sci. 11(9): 626-637.

 

*Corresponding author; email: kamalmsn@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous